
MOTOR & GENERATOR COOLERS

ErP 2015

QLKE, QDKE & QDKR

A07

MOTOR & GENERATOR COOLERS QLKE, QDKE & QDKR

Modine designs and manufactures cleanable coolers for electrical motors and generator cooling, where untreated sea or lake water is used.

The motor/generator coolers are used for the cooling of air via circulating water and can be installed for either horizontal or vertical airflow.

The cleanable coolers have removable eaders and can be designed with single or double tube, made of different materials depending on the corresponding water conditions.

Based on water analysis, Modine can recommend the best combination of materials for your cooler.

SINGLE TUBE COOLER TYPE QLKE & QDKE

The single tube cooler is made of 1/2" (12,7 mm) tubes with a circuit sized for the conditions of the cooling water.

The tubes are mounted in a bundle of aluminium or copper fins.

DOUBLE TUBE COOLER TYPE QDKR

The double tube cooler is made of 1/2" (12,7 mm) primary tubes with a circuit specifically sized for the conditions of the cooling water.

The pair of tubes are mounted in a bundle of aluminium or copper fins. The primary tube is inserted in a secondary copper tube with internal grooves. These grooves will drain any leakage water from the primary tubes. The water is drained out by a clearance between the primary and the secondary tube plate to any type of leakage device.

Modine can supply leakage detectors (see accessories list) which can be mounted into the cooler.

CLASSIFICATION

The double tube cooler is often used for applications in marine environments such as cooling of motors and generators aboard vessels and on offshore platforms.

The QDKR double tube cooler design is approved by most classification societies and we can provide classification certificates on request, issued by DNV, BV, GL, ABS, CCS, LR, RINA etc.

Examples of areas where our motor/generator coolers can be seen.

MOTOR & GENERATOR COOLERS QLKE, QDKE & QDKR

TUBE MATERIALS

The tubes are made of copper, coppernickel (90/10), stainless steel or titanium. The secondary tube for double tube cooler is made of copper. The fins on the tubes give an increased heating surface to compensate for the low heat transfer coefficient on the air side. The tubes are mechanically expanded into the fins to give absolute contact between the two materials. The pitch between the fins is selected to get required cooling duty and air pressure drop conditions.

FIN MATERIALS

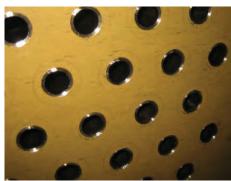
The fins are as standard made of aluminium, but can also be made of copper that resists a saline environment very well.

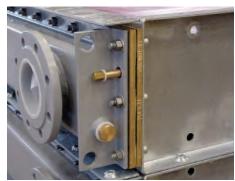
REMOVABLE HEADER

To assist with the mechanical cleaning of the cooler, the coil body is fixed between tube plates with a removable header (water box). The header is also equipped with drain and venting plugs. Headers can be made of Rilsan® coated steel, stainless steel or titanium.

The cooler may be internally cleaned by simply removing the headers and using a brush inside the tubes. The brush can be ordered as an accessory (QLKZ-08).

OIL & GAS


Modine motor generator cooler design can meet requirements on material selection, tightness control and strength evaluation often specified for oil and gas sector. For this market we also offer the necessary quality verfication and administrative tasks. Please contact us for more information.


Modine's management system is certified acc. to ISO 9001:2015, ISO 14001:2015 & ISO 3834-2:2005.

Single tube cooler with fin surface protection guard, QLKZ-03.

Tube plate with smooth rolled tubes.

Double tube cooler with fitting for leakage detector, QDKZ-09.

PACKING & SOFTWARE COILS

TECHNICAL DATA QLKE, QDKE & QDKR	ii*=00	ii*=01	ii*=02
Max. working pressure (MPa)	0,6	0,8	1,0
Design temperature (°C)	99	99	99
Test pressure (MPa)	0,9	1,2	1,5
For stainless steel & titanium header			
Max. working pressure (MPa)	0,5	0,8	1,0
Design temperature (°C)	99	99	99
Test pressure (MPa)	0,75	1,2	1,5

^{*} ii= Pressure class, according to product code key (see page 8).

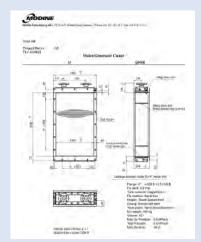
BUILT-IN FLEXIBILITY, VALUE-ADDED CUSTOMIZATION

With our extensive list of products, combined with a wide range of available options, we provide flexibility in building the exact solution for the exact industrial application. And if this flexibility isn't enough, our experienced design and engineering department will provide a specified quotation for a customized solution that does.

Afterall, no two applications are often exactly the same.

PACKING

The motor/generator coolers are delivered with different wood packing options depending on the specific transportation mode. The cooler is equipped with lifting lugs in order to place the cooler in right position.


Different wood packing options.

COILS SELECTION SOFTWARE

The Motor/Generator coolers QLKE, QDKE & QDKR are available in a wide range of configurations. Modine's software COILS is used to select and size the correct cooler.

It is a reliable and flexible software and generates a print-out of technical data and a dimensional drawing of the selected cooler. Some variables to be considered while sizing and selecting include:

- Cooling capacity
- Water flow rate & temperatures
- Air temperature
- Water quality condition
- Cooler size
- Mounting alternatives
- Environmental conditions

Dimensional drawing.


Contact us and we can supply the COILS software or help you in selecting the optimal cooler.

MATERIALS & ACCESSORIES QLKE & QDKE

Single tube cooler with copper fins resist saline environment very well.

Aluminium fins as standard on QLKE.

Set of counter-flanges, QLKZ-02-h.

Drain valve QLKZ-04-21.

STANDARD MATERIAL – QLKE & QDKE SINGLE TUBE

Tubes

Copper, Copper-Nickel, Stainless Steel, Titanium

Fins

Aluminium, Copper

Tube Plate

Brass, Stainless Steel, Titanium, Carbon Steel*

Heade

Rilsan® Coated Steel, Stainless Steel, Titanium

Frame work

Galvanized Steel, Stainless Steel, Aluminium

Special design

We have a wide range of standard materials, but if your application need a cooler with special requirements, such as corrosion protection or special materials, a special design may be the best solution.

Please contact us for more information.

* Only for ii=00

ACCESSORIES - QLKE & QDKE SINGLE TUBE

QLKZ-01-bbb-c-e	Gasket set, EDPM rubber
QLKZ-02-h-M	Set of counter-flanges
QLKZ-03-aaa-bbb	Fin surface protection guard, hot dip galvanized steel
QLKZ-04-21	Vent/Drain valve, 1/2" ball valve with 90° bend
QLKZ-04-22	Vent/Drain valve, 1/2" ball valve with straight outlet
QLKZ-04-23	Vent/Drain valve, 1/2" ball valve with straight outlet, special
QLKZ-06-MD-E	Set of sacrificial anodes
QLKZ-07-T-M	Stainless steel nameplate
QLKZ-08-aaa-n	Cleaning brush with rod

MATERIALS & ACCESSORIES QDKR

QDKR double tube

QDKR with copper tubes and aluminium fins.

QDKR with mounted leakage detector, type QDKZ-09-3.

STANDARD MATERIAL - QDKR DOUBLE TUBE

Primary Tube

Copper, Copper-Nickel, Stainless Steel, Titanium

Secondary Tube

Copper

Fins

Aluminium, Copper

Primary Tube Plate

Brass, Stainless Steel, Titanium

Secondary Tube Plate

Aluminium, Brass

Header

Rilsan® Coated Steel, Stainless Steel, Titanium

Frame work

Galvanized Steel, Stainless Steel, Aluminium

Special design

We have a wide range of standard materials, but if your application need a cooler with special requirements, such as corrosion protection or special materials, a special design may be the best solution. Please contact us for more information.

ACCESSORIES - QDKR DOUBLE TUBE

QLKZ-01-bbb-c-e Gasket set, EDPM rubber QLKZ-02-h-M Set of counter-flanges QLKZ-03-aaa-bbb Fin surface protection guard, hot dip galvanized steel QLKZ-04-21 Vent/Drain valve, 1/2" ball valve with 90° bend QLKZ-04-22 Vent/Drain valve, 1/2" ball valve with straight outlet QLKZ-04-23 Vent/Drain valve, 1/2" ball valve with straight outlet, special QLKZ-06-MD-E Set of sacrificial anodes QLKZ-07-T-M Stainless steel nameplate QLKZ-08-aaa-n Cleaning brush with rod QLKZ-11-OPP-M Safety valve

QDKZ-09-2-L Optical leakage detector, type CLD QDKZ-09-3-T-HL Level switch leakage detector,

type Kübler

PRODUCT CODE KEY QLKE, QDKE & QDKR

CODE KEY - QLKE

QLKE-aaa-bbb-c-d-e-ff-g-h-ii

aaa = Length parallel with tubes (cm) 040 - 300 (every 10 mm valid)

bbb = Width perpendicular to tubes (cm) 030-140 (every 33,33 mm valid)

c = Number of tube rows 2, 3, 4, 5, 6

d = Fin pitch (mm)

Corrugated fin	Corrugated fin	Flat fin
Al, Cu	Al, Cu	Al, Cu
Standard thickness	Reinforced thickness	Standard thickness
0 = 1.8	5 = 1,8	A = 1.8
1 = 2,0	6 = 2,0	B = 2,0
2 = 2,5	7 = 2,5	C = 2,5
3 = 3,0	8 = 3,0	D = 3,0

e = Number of water passes 2, 4

_f = Material combination (tube, tube plate and fins)

_f	Tube	Tube plate	Backing plate	Fin
		•	'	
1f	Copper	Brass	N/A	Aluminium
2f	Copper nickel	Brass	N/A	Aluminium
3f	Titanium	Titanium	N/A	Aluminium
4f	Stainless steel	Stainless steel	N/A	Aluminium
5f	Titanium	Titanium	N/A	Copper
9f	Copper	Brass	N/A	Copper
Of	Copper nickel	Brass	N/A	Copper
Gf*	Copper	Black Steel	N/A	Aluminium
Jf** (Alt for 3f)	Titanium	Titanium	Carbon steel	Aluminium
Kf** (Alt for 3f)	Titanium	Titanium	Aluminium	Aluminium
Lf** (Alt for 4f)	Stainless steel	Stainless steel	Carbon steel	Aluminium
Mf** (Alt for 4f)	Stainless steel	Stainless steel	Aluminium	Aluminium
Nf** (Alt for 5f)	Titanium	Titanium	Carbon steel	Copper

f_ = Header material

f2 = Stainless steel

f3 = Rilsan coated carbon steel

f4 = Titanium

f5 = Painted carbon steel (only valid for ii=00)

g = Installation type (see page 10)

1 = Duct installation, vertical mounting

2 = Hood installation, connection inwards, vertical mounting

3 = Hood installation, connection outwards, vertical mounting

6 = Hood installation, connection outwards, horizontal mounting

h = Connection flange

EN 1092-1 type 11**	EN 1759 type 11 150lbs (ANSI B 16.5)**
1 = DN 32	6 = 1 1/4"
A = DN 40	B = 1 ½"
2 = DN 50	7 = 2"
3 = DN 65*	8 = 2 ½"
4 = DN 80	9 = 3"
5 = DN 100	0 = 4"
* 4 mounting holes to fit against	the old std.(DIN2633)

ii = Pressure class

00 = 0.6/0.9 Mpa01 = 0.8/1.2 Mpa02 = 1,0/1,5 Mpa

CODE KEY - QDKE

QDKE-aaa-bbb-c-d-e-ff-g-h-ii

aaa = Length parallel with tubes (cm) 040 - 300 (every 10 mm valid)

bbb = Width perpendicular to tubes (cm) 030-140 (every 40 mm valid)

c = Number of tube rows 2, 3, 4, 5, 6

d = Fin pitch (mm)

Corrugated fin	Flat fin
Al, Cu	Al, Cu

Standard thickness Standard thickness

0 = 1.8A = 1.81 = 2,0B = 2,0C = 2.53 = 3.0D = 3.0

e = Number of water passes 2, 4

_f = Material combination (tube, tube plate and fins)

_f	Tube	Tube plate	Backing plate	Fin	
1.6	0	•	•	A I	
1f	Copper	Brass	N/A	Aluminium	
2f	Copper nickel	Brass	N/A	Aluminium	
3f	Titanium	Titanium	N/A	Aluminium	
4f	Stainless steel	Stainless steel	N/A	Aluminium	
5f	Titanium	Titanium	N/A	Copper	
9f	Copper	Brass	N/A	Copper	
Of	Copper nickel	Brass	N/A	Copper	
Gf*	Copper	Black Steel	N/A	Aluminium	
Jf** (Alt for 3f)	Titanium	Titanium	Carbon steel	Aluminium	
Kf** (Alt for 3f)	Titanium	Titanium	Aluminium	Aluminium	
Lf** (Alt for 4f)	Stainless steel	Stainless steel	Carbon steel	Aluminium	
Mf** (Alt for 4f)	Stainless steel	Stainless steel	Aluminium	Aluminium	
Nf** (Alt for 5f)	Titanium	Titanium	Carbon steel	Copper	
*Only valid for ii=00					

f_ = Header material

f2 = Stainless steel

f3 = Rilsan coated carbon steel

f4 = Titanium

f5 = Painted carbon steel (only valid for ii=00)

g = Installation type (see page 10)

1 = Duct installation, vertical mounting

2 = Hood installation, connection inwards, vertical mounting 3 = Hood installation, connection outwards, vertical mounting

6 = Hood installation, connection outwards, horizontal mounting

h = Connection flange

EN 1092-1 type 11**	EN 1759 type 11 150lbs (ANSI B 16.5)**
1 = DN 32	6 = 1 1/4"
A = DN 40	B = 1 ½"
2 = DN 50	7 = 2"
3 = DN 65*	8 = 2 ½"
4 = DN 80	9 = 3"
5 = DN 100	0 = 4"
+ A constitute to the fit and the	and the aid atd (DINOCOO)

^{= 4} mounting holes to fit against the old std.(DIN2633)

ii = Pressure class

00 = 0.6/0.9 Mpa

01 = 0.8/1.2 Mpa

02 = 1,0/1,5 Mpa

A0 = 0,6/0,9 Mpa, acc API std

A1 = 0.8/1.2 Mpa, acc API std

A2 = 1,0/1,5 Mpa, acc API std

^{**} PN40/300 lbs used for ii=03 (Carbon steel is 150 lbs for ii=03)

^{**} PN40/300 lbs used for ii=03 (Carbon steel is 150 lbs for ii=03)

CODE KEY - QDKR

QDKR-aaa-bbb-c-d-e-ff-g-h-ii

aaa = Length parallel with tubes (cm) 040 - 300 (every 10 mm valid)

 $\textbf{bbb} = \textbf{Width perpendicular to tubes (cm)} \ 030\text{-}140 \ \ (\text{every 50 mm valid})$

c = Number of tube rows 2, 3, 4, 5, 6

d = Fin pitch (mm)

Corrugated fin

Al, Cu

Standard thickness

0 = 1.8

1 = 2,0

2 = 2,5

3 = 3,0

e = Number of water passes 2, 4

_f = Material combination (tube, tube plate and fins)

_f		Primary	Secondary	Primary	Backing	Secondary	Fin
		tube	tube	tube plate	plate	tube plate	
1f		Copper	Copper	Brass	N/A	Aluminium	Aluminium
2f		Copper nickel	Copper	Brass	N/A	Aluminium	Aluminium
3f		Titanium	Copper	Titanium	N/A	Aluminium	Aluminium
4f		Stainless steel	Copper	Stainless steel	N/A	Aluminium	Aluminium
5f		Titanium	Copper	Titanium	N/A	Brass	Copper
6f		Stainless steel	Copper	Stainless steel	N/A	Brass	Copper
9f		Copper	Copper	Brass	N/A	Brass	Copper
Of		Copper nickel	Copper	Brass	N/A	Brass	Copper
Af		Copper	Copper	Brass	N/A	Brass	Aluminium
Bf		Copper nickel	Copper	Brass	N/A	Brass	Aluminium
Cf		Titanium	Copper	Titanium	N/A	Brass	Aluminium
Df		Stainless steel	Copper	Stainless steel	N/A	Brass	Aluminium
Ef		Copper nickel	Copper	CuNi 90/10	N/A	Brass	Aluminium
Hf		Copper nickel	Copper	CuNi 90/10	N/A	Aluminium	Aluminium
Jf** (Alt for 3f)	Titanium	Copper	Titanium	Steel	Aluminium	Aluminium
Kf**	(Alt for 3f)	Titanium	Copper	Titanium	Aluminium	Aluminium	Aluminium
	Alt for 4f)	Stainless steel	Copper	Stainless steel	Carbon steel	Aluminium	Aluminium
	(Alt for 4f)	Stainless steel	Copper	Stainless steel	Aluminium	Aluminium	Aluminium
	(Alt for 5f)	Titanium	Copper	Titanium	Carbon steel	Brass	Copper
	(Alt for 6f)	Stainless steel	Copper	Stainless steel	Carbon steel	Brass	Copper
	(Alt for Cf)	Titanium	Copper	Titanium	Carbon steel	Brass	Aluminium
	(Alt for Cf)	Titanium	Copper	Titanium	Aluminium	Brass	Aluminium
	(Alt for Df)	Stainless steel	Copper	Stainless steel	Carbon steel	Brass	Aluminium
	(Alt for Df)	Stainless steel	Copper	Stainless steel	Aluminium	Brass	Aluminium
**Only	valid for ii=	00 & 01					

f_ = Header material

f2 = Stainless steel

f3 = Rilsan coated carbon steel

f4 = Titanium

g = Installation type (see page 10)

1 = Duct installation, vertical mounting

2 = Hood installation, connection inwards, vertical mounting

3 = Hood installation, connection outwards, vertical mounting

6 = Hood installation, connection outwards, horizontal mounting

h = Connection flange

EN 1092-1 type $11^{\frac{1}{4}}$ EN 1759 type 11 150lbs (ANSI B 16.5)** 1 = DN 32 $6 = 1 \frac{1}{4}$ " A = DN 40 $B = 1 \frac{1}{2}$ " 7 = 2" 3 = DN 65* $8 = 2 \frac{1}{2}$ "

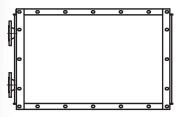
4 = DN 80 9 = 3" 5 = DN 100 0 = 4"

ii = Pressure class

00 = 0.6/0.9 Mpa

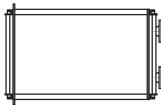
01 = 0.8/1.2 Mpa

02 = 1,0/1,5 Mpa

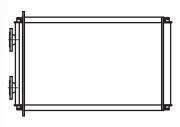

QLKE, QDKE & QDKR

We have a wide range of standard products, but can also build special solutions. Contact us for more information.

INSTALLATION ARRANGEMENTS & HOOD INSTALLATIONS

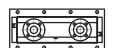

INSTALLATION TYPE (G) - QLKE, QDKE & QDKR

g=1 - Duct installation - Vertical mounting



g=2 - Hood installation - Connection inwards - Vertical mounting




g=3 - Hood installation - Connection outwards - Vertical mounting

g=6 - Hood installation - Connection outwards - Horizontal mounting

HOOD INSTALLATIONS A COMPLETE UNIT

are also available.

Modine supplies the complete hood unit, including the cooler, designed specifically to interface with motors or generators. The hood units are customized to fit the client's needs and can be delivered with or without fan units and with the steel painted according to the corresponding preferred paint system. Hoods made of stainless steel

The hood can be equipped with for example PT100 sensors, cable rails, inspection doors, drip tray with leakage detector and certified lifting lugs according to clients demands etc.

Large hoods can be designed as two separate pieces to optimize transportation. Please contact us for more information.

Hood installation with vertical mounting.

RESIN TRANSFORMER COOLER

Modine's Resin transformer cooler is a complete customizable unit with a cleanable cooler, fans, damper and leakage detector. Designed for small-medium transformer applications, such as transformer plants on sport fields, ships or other industrial applications where a tension commutation is needed without the set-up of a fixed plant cooled by oil.

Resin transformer cooler is particularly suitable for those environments subject to blast dangers, where traditional oil cooling would consequently not be recommended. On cruise or merchant ships, for example, this solution is very effective in order to comply with the safety rules concerning dangerous fluids: the traditional plant is replaced by static equipment, where only the fan-motors are rotating. All mobile or semi-mobile applications can therefore be operated by this integrated system that features forced air circulation.

FINNED PACK HEAT EXCHANGER

At the core of the Resin transformer cooler is a finned pack heat exchanger that allows the regulation of the air flow forced inside by the fan-motors. The product can also be equipped with dampers that intercept the air flow in case the fan-motors switch off.

COMPLETE SOLUTION

Modine supplies the complete solution, including the cooler and corresponding finned pack heat exchanger with all the control devices.

Modine's Resin transformer cooler is suitable for example on cruise ships.

Resin transformer cooler, a complete cooling unit.

To learn more, visit www.modinecoolers.com

and our others websites www.modine.com www.modinecoils.com

📕 See us at YouTube.com/ModineHVAC

MGCC2104A07EP_U ©2021 Modine Manufacturing Co.

About Modine

Modine Manufacturing Company has been a worldwide leader in thermal management since 1916. We design, engineer, test, and manufacture heat transfer products for a wide range of applications and markets. We're at work in practically every corner of the world, inside the things you see every day. Modine is a global company headquartered in Racine, Wisconsin (USA), with operations in North America, South America, Europe and Asia.

Contacts:

Sweden

Industrigatan 2 SE-614 81 Söderköping, Sweden Tel +46 121.191.00 inquiry-sodese@modine.com

Italy

Via Giulio Locatelli, 22 33050 Pocenia (UD), Italy Tel +39 0432.772.001

Belgium

Poortakkerstraat 41 B - 9051 Sint-Denijs-Westrem - Belgium

PRC

No. 242 Xi Da Road, Mei Cun, Wuxi New District, Jiang Su, P.R.China 214112 Tel +86 510.8055.1688

USA

PO Box 1457, 1000 Heatcraft Dr. Grenada, MS 38902 Tel +1 662.229.4116 Fax +1 662.229.2002